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Abstract

T'his Paper js concerned with linear algorithms for iden-
tification in H* which have been studied inl9l. It is shown
that the two diflerent linear algorithms in [9] canbe unified
into a single one which can be further extendedtononuni-
formly spaced frequency response samples with exponential
convergence for the noise free case. Improved upper bounds
for the corresponding identification errors arc derived. Ap-
plications to theidentification of lightly damped systems
such as flexible structures arc also considered.

1 Introduction

Recently, a control oriented identification problem has
been formulated by Helmicki, Jacobson and Nctt [6]: given
a finite number of noisy experimental frequency responsc
data, findan algorithm which not only identifics the nomi-
nal plant model, but also quantifies the worst case identifi-
cation error in H® norm. Further, the algorithm is required
to have the properly that ihc worst case identification er-
ror converge to zero asthe noise level goes to zero andthe
number of experimental data points goes to infinity. This
particular identification problem is termed as identification
in H°°, and is mainly motivated by thenced of modern ro-
bust control theory. in the context of fecdback system de-
sign, it is essential that the resulting system ident ification
algorithm produce anidentified mode] that convergesin a
topology for which feedback stability is a robust proper-(y.
Sue]) topology is chosen as H that is consistent with the
robust control design. Therescarch work along this direc-
tion constitutes an important part of robust identification.
See [1I- [8], [7]-[14]. 0 6)-[19] and references cited therein.

in this paper, linear algorithms for identificationin X
will be considered duc to their simplicity and efliciency.
An algorithm is said to betuned if the a priori informa-
tion of the plant model or/and mnoise level is used in the
identification process. Since untuned linear algorithins are
divergent in face of the worst casec noise [] 4], convergent
linear algorithms arc necessarily tuned. A class of tuned
linear algorithms are thmc reportedin [9] based onihe
leasl square fitting. While it remains unknown for the ex-
istence of other types of tuned linear algorithms which arc
convergent, our study reveals some interesting features of
the least square based linear algorithms [9]. The most in-
portant onc is that the linear algorithinsdeveloped in [9]
are exponentially convergent for nonuniformly spaced fre-
quency response data. Further, the two secmingly different
linear algorithins in [9) can in fact be unified into a single
onc which arc applicable to the problem of identificat ionin
H for both uniformly and nonuniformly spaced frequency
response data. lmproved upper bounds arc derived for the
least square based linear algorithm in [9]. It is also interest-
ing to note that thelincar algorithms studied inthis paper,
combined with thebalanced modecl reduction, give an ef-
fective procedure for the identification of lightly damped
systems.
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2 Problem Formulation and Preliminaries

L.et 7 denot ¢ the unit circle of the complex plane ' and
‘H denote the collection of all functions which arc essen-
tially bounded inT and which admit analytic extensionon
the open unit disc ‘D. An open open disc of radius p > 0
will be denoted by Dg. Under the norm

il = sup |f(2)], f €M,
2€D

H™® is a Banach space. The class of systems under con-
sideration consists of stable, causal, linear shift invariant
discrete-time systems that admit transfer function

oo
iL(Z) = Z’Lk Zk € Hoo,
k=0

with impulse response {hy }. The Z-transform is so defined
that the stability corresponds to no pole on the closed unit
disc. The true, unknown system to be identified is assuimed
to beinthe set
H(M, p)= {h:heH™ and|i(z)| < M, Vz € Dy}
(1)
where M > 0, p > 1. The value of M represents the system
gainover all exponentially weighted sinusoidal inputs while
the value of p represents the relative stability of the sys-
tell]. The pair (M, p) characterizes the a priort information
of thesystem to be identified which can bc experiment ally
estimated, The experimental data consists of a finite col-

lection of frequency responsesamples corrupted by noise 7
given by

}"‘l{v - B(Cjwk) Nk, Wk € ["7"1 7(], |77k| S [ @

wherek = 1,..., N ande >0. Since a physical system has
real impulse response, its frequency response satisfies the
property of conjugate symmetry. It is thus clear that wce
neced perform frequency response experimentally for only
positive frequencies. The problem of identification in #H©®
is to find an identification algorithm AN which maps the
experimental data (2), and a priori inforination (M, p, ¢}
10 an identified model hig € H® of degree n, and to an
identification error en(An,M,p, €)defined by

en(AN, M, Py €)= sup |li‘id - iz]]oo (3)

Reri(M, p),linlleee <e

Further, the algorithin Ay is required to be convergent in
the senise that

lm en (AN, M,p,e)= 0.

€¢—-0,Nn—oo

The algorithms interest to us in this paper are the tuned
lincar algorithms reported in[9]. As mentioned earlier, such
linecar algorithms have some interesting features whit]) are
not clear in [9]. The purpose of this paper is to give a uni-
fied treatment of least square based linecar algorithms. The
following lemnmais important in clarifying the two different
linear algorithms in [9] which is referred mixedParscrval
theorem.




Lemma 2.1 Let ﬁ(ej“’) = pod p167? 4 A prog BV
Denote Wy = 2™V | Then, for any N >,

n-1

1 2w 1 N-1
A Jwy(2 _ N (Al Ark V2
Sofs g /0 )P dw= LS k)P,
k=0

Since the proof of the mixed Parserval thcorem is cle-
mentary, it is omitted. Another result whichis useful to
provide improved error bounds in thenextsection is onthe
quantification of the H% norm in terms of the H? norm.

Lemma 2.2 Denote H2(Dp) asthe collection of functions
analytic on Dy, and absolutely square integrable on the

boundary of Dp. For any funclion fen? (Dp)with p >1,
define H%-norm by

i 2 )
7112 :(5;/0 If(C’“’)l2dW)

1/2
1

2w
fil2e = (5;/ If(pcj“’)Ide) (4)
0

1/2

Then,j € H*,and
N p+] 2
1 llos < \/ AR 71577

Proof: 1t is not diflicult to show that

Y T A {CV/ a0 | R )
(¥ = o '[ﬂ 1~ p=1/2 cos(w — 1) + p~1

by Possion’s integral.

that
1 1— p1? 2
112 . U — dt
“juz'\ﬁ’%r’ \]r i(- p=1/2 COS(t)'—i}))l
P41
\/ ---------- ik, v

From [9], any function § € H?(D,, ) satisfies inequality

Hence, Schwartz, inequality haplies

A

1713 <

||g||"'5 (rafry) ¢ ”QHIOZ(M/ﬂngﬂ’%(ﬂ"l)

2,711 2,1y

provided that ry < r < 72.Takingr; = 1, r=/p and
r2=pforg= J, itfollows that

1l < \/’ Ly ngis?

The lemma is thus true, [ |

A finallemma which will be used is the n-width inap-
proximation theory [1 5]. Define Py, as the collection of all
(m - 1)th order causal polynomial (or I'] R) model

Pu = {ﬁ 1H=poH piz4 . .t pm -lzmﬁl }o. (5)
The following lemma can befound in [15] (Theorem 2] of
page 250).

Lemma 2,3 Let M > 0,p >1. Then form= 0,1,...,

sup inl |k~ plleo = Mp~™.

her(M,p) PEPm

}f'urth(r,jo7'a7zyiz€7’((]\l, p), the globally optimalapproz-
imant of h

m-1

phlh) = Z (] . p2(k-m)) hp2®,
k=0

achieves the bound Mp~ "™ .That is,

sup “iL - Al = Mpm
iLE?[(M,p)

3 Main Results

In this section, least square based linear algorithins in
[9] will be revisited. The purpose of this paper is to give a
unified treatment of the linear algorithms in [9] and to de-
rive improved error bounds applicable to the nonuniformly
spaced frequency response data samples.

Let the experimental data sequence {Io'lfl

(2), with its DFT coeflicient denoted by

} be given in

N-1
es(BV)= = L}«;HWN , Wa= 2N = 0,1,..,N—
=0

Let the identified model be denoted as

n-—1

LP};Z a'll<N

The objective of the linear algorithms is to determine py’s
which arc linear functions of the experimental data (2) such
that the identification error measured in H% norm is suit-
ably small. The class of linear algorithins in [9] arc based
on the solutions of certain least. square probleins. T'wo such
lcast square problems which lead to linecar algorithins are
constrained minimizations

il.,‘d (2

FN-1

1= oy [L IPk — ek (BN)] J

I’ky"h-d ||2.p

with the convention that pp, = O forn < k < N -1 if
n < N, and

" 1/2
. . ' 2
R EPw lhiglla, p <M N

T'hese two mininization problems are treated differently in
[9land result in two different lincar algorithms, as well as
error bounds. It turns out that the two different linear
algorithins produce same identified model.

Proposition 3.1 The two different constrain ed mini miza-
tion problems Jy, and J,yield same solution hig, and
11 = J2

Proof: The fact that J;== J,is a direct con sequence
of the mixed Parserval’s theorem in Lemina 2. 1 . Since the
constrained minimizations arc least square problems, they

have unique solution, The proposition isthus true.
The al,ove oObservation is important, since one needs to

consider only J,. The next result gives an improved bound
forthe resulting identification error.

1.



Theorem 3.2 Lelthe noisy expertmental frequency re-
sponse data be given in (2). Let the identified mnodel b e
hia(2) € Py where the cocflicients arc defined by the so-
lution of the constrained minimization problem J,. Then,
the worst-case tdeniificalion error salisfies

CN(vapv e) < Mp~" 4 2M ’Z’"}% (X"i + P>”)

Proof: The minimization problem given has a solution
with

N-1 1/2

22 NhiaWh) 1ty <cq mp
k=0

To sce this note that hia = Bhlh] yields one such solution
by the n-width approximation. Hence,

L| wh) - hwh)|”

by thehypothesison N which in turnimplics that

1/2

< 24 Mp~®

N-1

”ilu'd - ﬁ;[m“i 71\; Z
k=0
< 4(c 4 Mpm™)?

in lightof LLernma 2.1. Note also that

Ipnllliz,e < llhll2,s < M, Vi€ H(M, p),

i

. s 2
hid(v‘,}i’) - pn[h](W,}’fJ”

Hence, ”;lid - Brll2,e <2M. Using Lemma 2.2, it follows
that

1 1/2
Wia = £3Alloo < 214 /27 (.‘, 4 p_,.)

with routine algebra, Now theerror bound canbeestab-
lished by noting that

en(M,p,e) < Mp™"+4 sup {”i‘:ld
heH(M,p),|nx |<c

~pnlillles } -
(]

It should be clear thattheerror bound in Theorem 3.2
improves the onc in [9], and has a simpler form. This is
duc to the fact that for the case ¢ = O, the error bound in
T'heorem 3.2 delcays in the order O(p"”/z),w}ncrcas in [9],
the error delcays in the order O(p~ ") where o < 1/2 for
p > 1. Further,the factor (p+ 1 )/(p -1 ) in [9] is replaced

y \/ (p+1)/(p-1)in Theorem 3.2.

Following the same steps as in [9], Theorem 3.2 gives the
following tuned linear algorithm with an explicit identifica-
ion error bound,

Corollary 3.3 lLet the noisy experimental frequency re-

sponse data be given by (.?). Denotec = ¢4 Mp ™. Form
the identified model

. . N
)= —ETD b ncw,

wiih{ck(j«;f"d)}ihe D11 coefficient of {IsN}. Then, the

worst case tdentification error satisfies

- -Il € RE
en(M,p,e) < Mp™"+(14V2)M 7 (M'I p'") .

Proof: Consider the following unconstrained minimiza-

tion problem:
20\ 2
€ .
1 () g,

C+ P12, It admits a solu-
tion A, such that J < 2?°. This can be shown by taking
id

i" == p&[h]. With the solution for the above unconstrained
minimization problem,

N—

1
J = min —

in k N2
. ja(Wr) — Iy
hi vy

k=0
withh}‘d:Po +Pprz+ ..

11/2
lc—[NLIh L (WEY - BN J < V2.

It follows that

No1 1/2

I d 1} 1
Wi walhll < Je 4 (% D
N
k=0
<+ \/_)(( +- Mp™™),

aud“h" = Phlloc,p M + V2M. The worst case identifica-

tion error bound can then be obtained following the steps

inthe proof of Theorem 3.2. To obtain the explicit solu-

tioxliL:ji,oxlc notices that the unconstrained minimization
problem is equivalent to

PLIRWE) - FN

n—1
J = n'\mISV\ lp;\ - ck(]'}N)|2
RS
Nt -
+ 3  |ewe™) ( ) Llpknz 2
k=n

by mixed Parserval’s theorem. The optmml solut ion Pk’s
can thenbeobtained try setting the partial derivatives
8J/0pk = 0 which gives the solution

pk:w,f!;(":ff),,,k: 01,..., 2~ 1.
¥1) P2

1 +-
The proof is now completed. [ |

Before concluding this seclion, it should be emphasized
that all thelincar algorithms discussed so far arc derived for
uniformly spaced frequency response data. Naturally, one
would like to know whether or not tile linear algorithms can
be adapted to the case where the frequency response data
is nonuniformly spaced as studied in [1, 13]. This question
will beanswered for the tuned linear algorithm.

Corollary 3.4 Let the experimental frequency response
data IsN be obtained at {w.‘},v]i'al which is notuniformly
spa ted. Define matriz Uy as

r1 eiwo eJ(I-Nwg 7
] (1-1
U, = 1 edwn ed(1-1)wy ,
1 el¥N-1 ed(I-Nwn_y

where O < 1_< N. Suppose the identified modelh L E€EPn
is obtained from the following unconsirained mmmuza tion

problem
]Nf]
we i (S finern - i )4 () g
v ery, \ N o
id " k=0

with same & as in Corollary 3.3.
identifi cation erro v salisfies

Then, the worsl case

VN@ + VEM 1(c
en(M,p,e) < Mp~ny 22— X207 8 L (>,, n)
~ )< ominUn) Vo-i\m*?




Proof: It is noted that the tuned algorithm is similar to
that in Corollary 3.3 except that the frequency response
dataisnot uniformly spaced. Samecarguament in Corollary
3.3 gives Jn< 2¢2, and thus a solution 7L:‘d € Py, exists
such that
1/2

N-—1
1\ . .
% 2 ey - e[| <4 v
k=0

])cnotc_f = hy=ph[Rl € Pp. Then, the abave is cquivalent
to
N-1 172
1 ~ 1, 2 1
~ J(e7%) = —=|UnIil2 < (14 V2)i

where F' is a column vector of size N with first n elements
being the n coeflicients of f respectively, and the rest. cle-
ments zero. Note that by the definition of singular values,

1 <VNomaz (UG )= —~noco
- on aJ( N ) amdn(UN)
It follows that
Rz - Pl = e < VNQ -t V2)ioman (UY)
VNI + V2)i
amin(UN)
for any h € H(M, p). Similarly, ||it?d||2,p <V2M. Thus

5 = bl < (14 VEM < V2LV,
- Umin(UN)

Hence, the error bound can be established following the
same steps in the proof of Corollary 3.3.

A fcw comments arc in order. Iirst, denote I’ as a col-

wnn vector of size n with coeflicients of A}, as the clements.
‘Jhell, the minimization problem in COI'oflal'y 3.4 has a ma-
Lrix represent at ion

3 U d.¢
j\’iVmA 0 2
where U, is same as in Corollary 3.4 withl=n, A =

diag(1,p, ...,p("‘])), and
1 1 1

!

2

min
PeRn

v'm = '—J ————— 1 W’" e VV',:: !
roy .
1 vv,rlrlz»] M,'(,;n»])(n»l)
1y
Y
£ = 1 , m > n. (©)

N

}/N__]

Hence, the solution F is easily obtained from the orthog-

onality condition. Sccond, since Vi, satisfies VIV, =1,

for m > n where V;#/ denotes the conjugation transpose of

Vo,
U”U, 52 “ U"f'
P=[-n" —_ 2 I 7
( T ) Ay W)

which is well defined even if UM U, insingular, though in
this case, the error bound is not defined. It should be clear
that UH Uy, is nonsingular if anti only if all {wi}'s avc dis-
tinct. Finally, note that if @’s arc uniformly spaced, then
UM U, = NI, for whichUX€/N is the inverse DI'T of the
experimental measurement data and both the solution and
the error boundreduce to those of Corollary 3.3 by noting

that oyaaz (UN) '—'—'Um:'n(UN) =VN.

4 Applications to Identification of Flexible
Structures

It is known that two-stage nonlinear algorithins [s, 4, 14]
are not eflective for lightly dainped systems such as flex-
ible structures [5]. The difliculty lies inthe model reduc-
tion part of the identified model. Most model reduction
algorithms such as balanced realization and Hankel norm
approximation require computations of controllability and
obscrvability gramnians. Since the identificd model fromthe
t wu-stage noulinear algorithm inevitably has a high order
for flexible structures and is a sumof a rational function(re-
suited from Nchari approximant)and a causal polynomial
function, it is alimost impossible to compule controllabil-
ity and observability gramians, or the resulting gramians
are not accurate. This problemn also exists for interpola-
tion based algorithms [2, 7]. It is noted that the linear
algorithm studied in this paper produce identified models
having FIR structure, the computation for controllability
and observability gramians requires only onesingular value
decomposition [6]. Due to the reliability of singular value
decomposition, the reduced order model retains dominant
modes of the flexible structure.Hence, thelcast square lin-
car algorithm provides an alternative which is quite effec-
tive as shiown in next section. Further, th emodeling error
caused by model reduction can be easily bounded using the
cxisting results.

5 Nlustrative Examples

To illustrate thecffectiveness of the linear algorithm, two
cxamples arc used. The true system of the first example is
given by

10

NPT (8)
z¢ 4 524 10

It can be verified that A(z) with M = 2.1 and p = 15.
The experimental data is generated by uniform samples
of h(e?*) with corrupting noise ij; = €e7? where 8 is the
uniformly distributed random variable, Wc have chosen
¢ = 0.2 which is roughly one-tenth of the ||h||o . The sim-
ulation consists of N = 64 experimental data points for
both uniform and nonuniform sampling cases. The iden-
tificd models arc obtained using least square based linear
algorithm. The magnitude error responses arc plotted in
Figure 1 with solid line for uniformly spaced sampling case
and with dashed line for nonuniformly sp.aced sampling
case. Because nonuniforin sampling takes more samples
al fast variationintcrval and fewer samples at slow varia-
tion interval of the frequency respounse, it often has a better
performance than that of uniformn sampling although it has
a larger error bound.

The sccond example is taken from [5] where the true sys-
tem is a flexible structure. While the two-stage nonlinear
algorithm in[8, 4, 14] is not eflective for identification of
lightly damped systems [5], the linear algorithm studied in
this paper, in conjunction with the balanced model reduc-
tion, yields a very impressive result. The magnitude re-
sponse of the experiinental data is plotied in Figure 2 with
solid line. Since no e priort information on M, p ande are
given in [5], we have used M = 130, p = 1,01 ande= 0.5.
Corollary 3.3 is applied with N = n = 1024 to obtain the
FIR model. Balanced recalization method for model reduc-
tion is then applied to obtain a low order model of McMil-
lan degree 26. 1ts magnitude error response is plotted in
Figure 3. We would like to comment that although other
algorithms can also obtain similar results with less compu-
tational effort, the linear algorithm studied in this paper
combined with the balanced model reduction constitutes a
convergent algorithm for identification inJls,. Since bal-
anced modcl reduction for an IR model needs to compute
only onesingular value decomposition of a 1024 x 1024 posi-
tive definite matrix [6], this example demonstrates that the
algorithm is quite reliable.

h(z) =



G Conclusion

The least square based linecar algorithms in [9] ave revis-
ited and new error bounds are derived. It is shown that
the tuned linear algorithms in [9] are applicable to nopuni-
formly spaced frequency vesponse data which are quite dif-
ferent from the two-stage nonlinear algorithms asin [1].
In particular, exponential convergence for noise free case is
prc.served.
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Figure 1: M agnitude response of the identification er-
ror for the first example

T

Figure 2: Magnitude response of thctiruesystem for
the sccond example
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Figure 3: Magnitude response of the identification er-
ror for the second example




